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Direct and Inverse Cascades in Two-Dimensional
Turbulence with a Generalized Enstrophy Invariant
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Direct and reverse cascades are shown to be generic to two-dimensional turbulence
with a generalized enstrophy invariant Ũ 5 * 1–2 .¹2qC.2 dx 5 const, q Þ 1–2 . The
classical hydrodynamical situation is a special case (q 5 1) of the general result.

1. INTRODUCTION

Two-dimensional hydrodynamic turbulence is characterized by the two
following underlying integral invariants:

energy W [ # 1
2

.¹C.2 dx 5 const (1)

enstrophy U [ # 1
2

.¹2C.2 dx 5 const (2)

where C(x, y) is the stream function. It was conjectured by Kraichnan [1]
and Batchelor [2] that these two invariants give rise to two cascades, an
inverse energy cascade, in which energy propagates toward larger scales, and
a direct enstrophy cascade, in which enstrophy propagates toward smaller
scales.

Numerical calculations of Frisch et al. [3], Lilly [4], Herring et al. [5],
Pouquet et al. [6], Fornberg [7], and Frisch and Sulem [8], among others,
and laboratory experiments of Couder [9], Sommeria [10], Rutgers [11], and
Paret and Tabeling [12], among others, confirmed the conjecture of Kraichnan
[1] and Batchelor [2]. When energy and enstrophy are continuously injected
at a fixed wavenumber, a quasi-steady regime was found to develop where
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enstrophy cascades to large wavenumbers across a k23 inertial range with
zero energy transfer, while energy flows indefinitely to small wavenumbers
across a k25/3 inertial range with zero enstrophy transfer. The purpose of
this paper is to complement these investigations by giving an analytical
demonstration of the inverse energy cascade and direct enstrophy cascade
and to show that these results are indeed generic to a two-dimensional turbu-
lence with a generalized enstrophy invariant

Ũ [ # 1
2

.¹2qC.2 dx 5 const, q Þ
1
2

(3)

[The case q 5 1/2 is to be excluded because, for this case, (3) simply
degenerates into (1)!] The classical hydrodynamic case corresponds to q 5 1.

2. ENERGY AND GENERALIZED ENSTROPHY CASCADES

Consider a source in the spectral space at wavenumber ks with energy
Ws 5 W(ks). This source would then decay via triadic interactions into two
modes with wavenumbers k1 and k2 and energies W1 and W2 respectively.
Since energy and generalized enstrophy are conserved during this decay,
we have

Ws 5 W1 1 W2 (4)

k4q22
s Ws 5 k4q22

1 W1 1 k4q22
s W2 (5)

(4) and (5) imply that the energy is partitioned as follows:

W1 5
k4q22

2 2 k4q22
s

k4q22
2 2 k4q22

1
Ws (6a)

W2 5
k4q22

s 2 k4q22
1

k4q22
2 2 k4q22

1
Ws (6b)

(6a) and (6b) imply in turn that

k4q22
2 . k4q22

s . k4q22
1 (7)

so that ks lies between k1 and k2.
Now, (4) implies that

W1 5 pWs , W2 5 (1 2 p)Ws , 0 , p , 1 (8)

If we put further

k1 5 a1/(4q22)ks , k2 5 b1/(4q22)ks (9)

we have from (5),
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aW1 1 bW2 5 Ws 5 W1 1 W2 (10)

(8) and (10) then lead to

(a 2 1)p 1 (b 2 1)(1 2 p) 5 0 (11)

from which

a 5 p, b 5 1 1 p (12)

(12) was proposed (without deduction) by Hasegawa [13] in the special case
q 5 1.

Let us therefore assume that a mode ks first decays into modes k1 (k1 5
p1/(4q22)ks) and k2 (k2 5 (1 1 p)1/(4q22)ks) with corresponding energies W1 5
pWs and W2 5 (1 2 p)Ws and generalized enstrophies Ũ1 5 k4q22

s p2Ws and
Ũ2 5 k4q22

s (1 2 p2)Ws, respectively.
In the next step of the cascade, the mode k1 decays into a mode

p1/(4q22)k1 5 p1/(2q21)ks and another mode (1 1 p)1/(4q22)k1 5 p1/(4q22)(1 1 p)1/

(4q22)ks , while the mode k2 decays into a mode p1/(4q22)k2 5 p1/(4q22)(1 1 p)1/

(4q22)ks and another mode (1 1 p)1/(4q22)k2 5 (1 1 p)1/(2q21)ks. The energies
of the modes p1/(2q21)ks , p1/(4q22)(1 1 p)1/(4q22)ks , and (1 1 p)1/(2q21)ks are
p2Ws , 2p(1 2 p)Ws , and (1 2 p)2Ws , respectively.

Thus, at the nth step of the cascade, the energy is given by

W(k 5 p(n2r)/(4q22)(1 1 p)r/(4q22)ks) 5 1n
r2pn2r(1 2 p)rWs (13)

Now, by the de Moivre–Laplace approximation, we have for the binomial
distribution [14]

lim
n⇒`1n

r2pn2r(1 2 p)r '
1

!2pnp(1 2 p)
e(n2r2np)2/2pp(12p) (14)

so that the binomial distribution in (13) peaks at r/n ' 1 2 p as n ⇒ `.
The corresponding wavenumber is given by

k* 5 lim
n⇒`

[pn2r(1 1 p)r]1/(4q22)ks

5 lim
n⇒`

[p12(r/n)(1 1 p)r/n]n/(4q22)ks

5 lim
n⇒`

[pp(1 1 p)12p]n/(4q22)ks (15)

In order to evaluate the limit in (15), it proves to be convenient to use
the following result [15] on the generalized arithmetic/geometric/harmonic
means (I am deeply indebted to Dr. M. D. Taylor for this perceptive
suggestion):
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Suppose a1, . . . , an and p1, . . . , pn are positive numbers such that p1 1
??? 1 pn 5 1 and ai Þ aj (i Þ j ); then,

1
p1/a1 1 ??? 1 pn /an

, ap1
1 ??? apn

n , p1a1 1 ??? 1 pnan (16)

Taking n 5 2, a1 5 p, a2 5 1 1 p, p1 5 p, and p2 5 1 2 p, we obtain
from the second inequality

pp(1 1 p)12p , p2 1 (1 2 p2) 5 1, 0 , p , 1 (17)

Using (17), we obtain from (15)

k* ' 0 (18)

Therefore, as n ⇒ ` the peak of the energy distribution moves to k ⇒ 0,
and the energy cascades inversely even in the general case.

Next, the generalized enstrophies of the modes p1/(2q21)ks , p1/(4q22)(1 1
p)1/(4q22)ks , and (1 1 p)1/(2q21)ks are k4q22

s p4Ws , 2k4q22
s p2(1 2 p2)Ws, and

k4q22
s (1 2 p2)2)Ws, respectively.

Thus, at the nth step of the cascade, the generalized enstrophy is given by

Ũ(k 5 p(n2r)/(4q22)(1 1 p)r/(4q22)ks) 5 1n
r2( p2)n2r(1 2 p2)rk4q22

s Ws (19)

Once again, by using the de Moivre–Laplace approximation, we see that the
binomial distribution in (19) peaks at r/n ' 1 2 p2 as n ⇒ `. The correspond-
ing wavenumber is given by

k̃* 5 lim
n⇒`

[pn2r(1 1 p)r]1/(4q22)ks

5 lim
n⇒`

[p12(r/n)(1 1 p)r/n]n/(4q22)ks

5 lim
n⇒`

[p p2
(1 1 p)12p2

]n/(4q22)ks (20)

In order to evaluate the limit in (20), take n 5 2, a1 5 p, a2 5 1 1 p,
p1 5 p2, and p2 5 1 2 p2; we then obtain from the first inequality in (16),

p p2
(1 1 p) p2

.
1

p2/p 1 (1 2 p2)/(1 1 p)
5 1, 0 , p , 1 (21)

Using (21), we obtain from (20)

k̃* ⇒ ` (22)

Therefore, the peak of the generalized enstrophy distribution moves to k ⇒
` as n ⇒ `, and the generalized enstrophy cascades directly.
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3. DISCUSSION

In this paper, we have given an analytical demonstration of the inverse
energy cascade and direct enstrophy cascade in two-dimensional turbulence
and have shown that these results are stronger than what may appear from
a consideration of the classical hydrodynamic case. They are indeed generic
to a two-dimensional situation with a generalized enstrophy invariant

Ũ [ # 1
2

.¹2qC.2 dx 5 const, q Þ
1
2

(3)

of which the classical hydrodynamic situation is a special case (q 5 1)!
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